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As breakthrough cellular therapy discoveries are translated into reliable, commercializable applications, effective stem
cell biomanufacturing requires systematically developing and optimizing bioprocess design and operation. This article
proposes a rigorous computational framework for stem cell biomanufacturing under uncertainty. Our mathematical tool
kit incorporates: high-fidelity modeling, single variate and multivariate sensitivity analysis, global topological super-
structure optimization, and robust optimization. The advantages of the proposed bioprocess optimization framework
using, as a case study, a dual hollow fiber bioreactor producing red blood cells from progenitor cells were quantita-
tively demonstrated. The optimization phase reduces the cost by a factor of 4, and the price of insuring process perfor-
mance against uncertainty is approximately 15% over the nominal optimal solution. Mathematical modeling and
optimization can guide decision making; the possible commercial impact of this cellular therapy using the disruptive
technology paradigm was quantitatively evaluated. VC 2017 American Institute of Chemical Engineers AIChE J, 00:
000–000, 2017
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Introduction

Biomanufacturing process engineering is now at a stage

where we can consider systematic production of cell thera-

pies.1–7 But stem cell biomanufacturing is a new industry with

high upfront costs and long time scales to market, so commer-

cializing therapies such as ex vivo red blood cell (RBC) pro-

duction requires detailed cost-benefit analyses and financial

planning.8 Relevant cost contributions include materials, time,

regulatory, and staff. Researchers have begun considering bio-

processing strategies enabling systematic, reliable production

of cellular therapies.1,9–12 Mathematical modeling and optimi-

zation can positively impact stem cell biomanufacturing.13

This article proposes a computational framework for stem cell

bioreactor design and operation which: accurately predicts eryth-

ropoietic, that is, RBC, maturation in the bioreactor via

high-fidelity modeling, discovers the factors most affecting pro-

duction/cost/quality through single variate and multivariate sen-

sitivity analysis, determines the best bioreactor design using

global topological superstructure optimization, devises opera-

tional strategies maximizing bioreactor production under uncer-

tainty via robust optimization, analyzes the likelihood of the

bioreactor to be a disruptive technology using net present value

(NPV) market analysis. We quantitatively demonstrate the advan-

tages of the proposed bioprocess optimization framework using,

as a case study, a dual hollow fiber bioreactor that produces RBC

from hematopoietic cell, that is, blood cell, progenitors.14,15

This article’s core goal is formulating a computational frame-

work facilitating stem cell bioreactor design and operation. The

mathematical tool kit builds on algorithms previously developed

for mainstream industries, for example, superstructure
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optimization is frequently applied to petrochemical refining. We
show how to adapt, change, and apply the tools toward stem cell
bioreactor design. Bioprocess optimization under uncertainty
has been previously considered for monoclonal antibody produc-
tion,16–18 but mathematical optimization for the cellular therapy
industry requires: (1) accurately incorporating cellular kinetics,
(2) capturing spatial design scales ranging from individual cellu-
lar behavior to bioreactor layout, (3) representing temporal
scales ranging from metabolic reactions to cellular differentia-
tion, (4) elucidating the impact uncertainty and heterogeneity
have onto the final outcome. This article shows how the pro-
posed computational framework incorporates the four preceding
considerations; suggests specific bioreactor features for further
experimental study with respect to the target cell type (RBC);
motivates the application of this framework to other cellular
therapy applications. We also analyze the potential for this to
become a disruptive technology, that is, transform an industry
with less than 2 years lead time to the clinic.19,20

The modular, mathematical framework being proposed is

illustrated in Figures 1–3. This article belongs to an ongoing

effort developing building blocks for modeling and optimizing

biomedical systems.21,22 Figure 1 diagrams the computational

tool kit of six mathematical methods and Figure 2 show their

synergies which facilitate stem cell bioreactor design. Figure 3

outlines four sets of mathematical models needed for bioreac-

tor design (objectives, equipment, species, cellular characteris-

tics); each contains its own modeling, optimization, and

uncertainty considerations.
As an example of the computational framework, we con-

sider the RBC-producing hollow fiber bioreactor illustrated in

Figure 4. This novel, biomimetic, cost effective 3-D hollow
fiber bioreactor grows healthy blood ex vivo.14,15 This bioreactor
recapitulates the architectural and functional properties of blood
formation and thereby reduces the need for growth factors (GFs)
by an order of magnitude.14,23 Nutrients, GFs, and oxygen flow
through the hollow fibers via Poiseuille flow and diffuse into the
3-D polymeric scaffold; resulting reactions cause the cells to
grow, proliferate, and differentiate. Products and byproducts are
excess cells and waste which diffuse out of the scaffold and exit
through the hollow fibers. The dual hollow fiber design illus-
trated in Figure 5 allows recycling the expensive GFs in one set
of capillaries (B) while taking up nutrients and discarding waste
metabolites in another capillary set (A).15 We previously pro-
posed a nominal superstructure optimization model for designing
and operating the bioreactor.24 Rigorous, deterministic global
optimization designed the nominal superstructure by simulta-
neously considering: number of parallelized bioreactor, number
and type of hollow fibers, size and aspect ratio, feed concentra-
tions, and flow rate through the bioreactor.

This article designs a computational framework analyzing
how uncertain stem cell bioreactor performance impacts tech-
nology marketability. Our work fits into a broader vision of
applying Quality by Design (QbD) toward reliable, reproduc-
ible, cellular therapy applications.13,25,26 Specifically, we man-
age uncertainty by: robustifying bioreactor design so that each
reactor is likely to work; analyzing the price of robustification;
quantifying how uncertainty affects bridging scales from indi-
vidual reactions to production; identifying which sources of
uncertainty profoundly impact bioreactor variability; compar-
ing the impact of using different mathematical models;

Figure 1. The proposed bioprocess optimization framework consists of: operation and design decisions, modeling
and simulation aspects, optimization, and handling model and parameter uncertainty.

The recipe illustrated in Figure 2 for building the biomanufacturing framework under uncertainty uses the components in this figure.
[Color figure can be viewed at wileyonlinelibrary.com]
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optimization is frequently applied to petrochemical refining. We
show how to adapt, change, and apply the tools toward stem cell
bioreactor design. Bioprocess optimization under uncertainty
has been previously considered for monoclonal antibody produc-
tion,16–18 but mathematical optimization for the cellular therapy
industry requires: (1) accurately incorporating cellular kinetics,
(2) capturing spatial design scales ranging from individual cellu-
lar behavior to bioreactor layout, (3) representing temporal
scales ranging from metabolic reactions to cellular differentia-
tion, (4) elucidating the impact uncertainty and heterogeneity
have onto the final outcome. This article shows how the pro-
posed computational framework incorporates the four preceding
considerations; suggests specific bioreactor features for further
experimental study with respect to the target cell type (RBC);
motivates the application of this framework to other cellular
therapy applications. We also analyze the potential for this to
become a disruptive technology, that is, transform an industry
with less than 2 years lead time to the clinic.19,20

The modular, mathematical framework being proposed is

illustrated in Figures 1–3. This article belongs to an ongoing

effort developing building blocks for modeling and optimizing

biomedical systems.21,22 Figure 1 diagrams the computational

tool kit of six mathematical methods and Figure 2 show their

synergies which facilitate stem cell bioreactor design. Figure 3

outlines four sets of mathematical models needed for bioreac-

tor design (objectives, equipment, species, cellular characteris-

tics); each contains its own modeling, optimization, and

uncertainty considerations.
As an example of the computational framework, we con-

sider the RBC-producing hollow fiber bioreactor illustrated in

Figure 4. This novel, biomimetic, cost effective 3-D hollow
fiber bioreactor grows healthy blood ex vivo.14,15 This bioreactor
recapitulates the architectural and functional properties of blood
formation and thereby reduces the need for growth factors (GFs)
by an order of magnitude.14,23 Nutrients, GFs, and oxygen flow
through the hollow fibers via Poiseuille flow and diffuse into the
3-D polymeric scaffold; resulting reactions cause the cells to
grow, proliferate, and differentiate. Products and byproducts are
excess cells and waste which diffuse out of the scaffold and exit
through the hollow fibers. The dual hollow fiber design illus-
trated in Figure 5 allows recycling the expensive GFs in one set
of capillaries (B) while taking up nutrients and discarding waste
metabolites in another capillary set (A).15 We previously pro-
posed a nominal superstructure optimization model for designing
and operating the bioreactor.24 Rigorous, deterministic global
optimization designed the nominal superstructure by simulta-
neously considering: number of parallelized bioreactor, number
and type of hollow fibers, size and aspect ratio, feed concentra-
tions, and flow rate through the bioreactor.

This article designs a computational framework analyzing
how uncertain stem cell bioreactor performance impacts tech-
nology marketability. Our work fits into a broader vision of
applying Quality by Design (QbD) toward reliable, reproduc-
ible, cellular therapy applications.13,25,26 Specifically, we man-
age uncertainty by: robustifying bioreactor design so that each
reactor is likely to work; analyzing the price of robustification;
quantifying how uncertainty affects bridging scales from indi-
vidual reactions to production; identifying which sources of
uncertainty profoundly impact bioreactor variability; compar-
ing the impact of using different mathematical models;

Figure 1. The proposed bioprocess optimization framework consists of: operation and design decisions, modeling
and simulation aspects, optimization, and handling model and parameter uncertainty.

The recipe illustrated in Figure 2 for building the biomanufacturing framework under uncertainty uses the components in this figure.
[Color figure can be viewed at wileyonlinelibrary.com]
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exploring the potential product marketability. Our computa-

tional analysis feeds back into experiments by suggesting

candidate parameters validated using quantitative image

analysis.27

Computational Methods

Our overall computational goal is studying uncertainty

using a baseline model and analyzing which sources of uncer-

tainty have the most impact. The outcome of this study is to

understand the quantitative tradeoffs for entering the RBC pro-

duction market using a particular technology. We use as an

example a model of RBC production in a dual hollow fiber

bioreactor.24 The following subsections describe the compo-

nent methods of our framework: mathematical models of stem

cell fate; Krogh modeling and computational fluid dynamics

(CFD); single variate and multivariate sensitivity analysis;

superstructure optimization; robust optimization; NPV market

analysis. Figure 1 shows the constituent parts and Figure 2

illustrates how they fit into a cohesive framework.

Mathematical models of progenitor cell fate

White-box, dynamic models of stem cell growth, prolifera-

tion, and differentiation are frequently developed by biologists,

engineers, and mathematicians.28–36 Roeder32 summarizes

these models, which conceptualize bioreactor cellular pro-

cesses, for example, via molecular regulators34 or via network

structure and dynamics.36 When we developed our optimiza-

tion model for the blood cell bioreactor,24 we chose an ordinary

differential equation (ODE) model relating hematopoiesis to

the availability of GF proteins33; the Ma et al.33 model aug-

ments earlier hematopoiesis models.28,29,31 Using a discretized

version of the Ma et al.33 model allowed us to relate growth

kinetics to GF, the most expensive process input.24 For uncer-

tainty analysis, we compare it with a competing literature

hematopoiesis model; the Lobato da Silva et al.30 model of

hematopoiesis in 2-D suspension culture effectively bounds the

performance of the 3-D bioreactor. The RBC bioreactor will

perform intermediate to human hematopoiesis31 and 2-D sus-

pension culture.30

Krogh modeling and computational fluid dynamics

Misener et al.24 model mass transfer in the dual hollow fiber

bioreactor following prior work.37–44 Specifically, we use the

Krogh45 approximation which models fluid flow within the

bioreactor as an analytical function. But Krogh45 developed

his original model, illustrated in Figure 6, with respect to oxy-

gen distribution in muscle tissues where capillary densities

range 379–2341 mm22 46; the assumption of evenly distrib-

uted, noninteracting capillaries may not be valid in a bioreac-

tor which can accommodate 0.15–0.25 capillaries mm22.15

The Krogh45 model validity is further challenged by: (1)

extending the reactive species from O2 to additionally incorpo-

rate glucose, lactate, stem cell factor (SCF), and erythropoietin

(EPO); and (2) the dual hollow fiber design of Macedo14

which allows selective species exchange such that adjacent

hollow fiber have different characteristics. To quantify the

error introduced by assuming the Krogh45 model, we use a

high-fidelity CFD model of mass transfer and numerically test

the Krogh45 hypothesis using COMSOL 4.0a and finite ele-

ment analysis. The Computational Fluid Dynamics section in

the Supporting Information describes the complete setup that

tests varying placements of hollow fibers so as to contradict

the Kroghian assumption of equal spacing.

Figure 2. Recipe for the biomanufacturing under uncertainty framework uses the algorithm components illustrated
in Figure 1.

[Color figure can be viewed at wileyonlinelibrary.com]
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Single variate and multivariate sensitivity analysis

Sensitivity analysis relates model parametric uncertainty to

process design decisions and is therefore a commonly used

tool in process engineering applications.47–49 Misener et al.24

use one-at-a-time sensitivity analysis to test how parameter

uncertainty affects optimization outcomes. But any variety of

single-parameter analysis makes it difficult to analyze the non-

linear parameter interactions common in biotechnology and

bioengineering.50 Sensitivity analysis in optimization typically

relates to shadow prices (Lagrangian multipliers) but, for the

RBC bioreactor, we cannot use these sensitivities because: (1)

the discrete design choices make the shadow prices meaning-

less; and (2) we want to study the parameters globally across

their entire range.
Global sensitivity analysis (GSA), which estimates the

effect of higher level indices across the entire parameter

space,51 has been used in bioprocess engineering contexts

including developing cell culture parameters.52 An alternative

to GSA incorporates principal component analysis.53 It would

be ideal to use GSA for optimizing the hematopoietic cell bio-

reactor, but the Misener et al.24 model has 30 possible parame-

ters and each optimization run requires �300 s (mathematical

optimization is typically more computationally demanding

than mathematical simulation because each optimization may

require many simulations or function calls). There are 435

combinations of two parameters (30 � 29=2) where, if we

consider four levels of each parameter will take 30�29
2

� 42 � 300
s524:2 CPU days; 4060 combinations of three parameters

(902.2 CPU days); 27,405 combinations of four parameters

(24,360 CPU days).
To mitigate, single variable and multivariable sensitivities

analyze which parameter combinations have the most signifi-

cant joint effect. Our strategy is similar to the Morris54 ele-
mentary effects method which copes with computationally

expensive simulation models, but note that moving from a

simulation to an optimization model implies considering opti-

mization solution outputs rather than simulation sensitivities.

For a linear optimization model, we would expect the sensitiv-

ity Si;j to be approximately 0; significantly large values of Si;j
indicate that nonlinearity in the optimization model is affect-

ing the final outcome.

Global topological superstructure optimization

Typical superstructure optimization applications are in

industry; examples include: well scheduling in petroleum

fields,55,56 crude oil scheduling in a petrochemical refinery,57

designing wastewater treatment systems,58–60 and crystalliza-

tion.61 The purpose of Misener et al.24 applying superstructure

optimization to a stem cell bioreactor is simultaneously testing

a range of design variables leading to different superstructure

possibilities; the ANTIGONE algorithm resolves design

choice tradeoffs.62

Figure 3. Optimal design under uncertainty for stem cell biomanufacturing requires incorporating four sets of
mathematical models: (1) optimization, (2) models of mass transfer and cell kinetics, (3) design and oper-
ation, and (4) uncertainty characterization.

This application of the methods described in Figure 1 and the recipe diagramed in Figure 2 finds the optimal bioreactor design
and operation that works under uncertainty and maximizes the RBCs produced while keeping the cost as low as possible. [Color
figure can be viewed at wileyonlinelibrary.com]
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process design decisions and is therefore a commonly used

tool in process engineering applications.47–49 Misener et al.24

use one-at-a-time sensitivity analysis to test how parameter

uncertainty affects optimization outcomes. But any variety of

single-parameter analysis makes it difficult to analyze the non-

linear parameter interactions common in biotechnology and

bioengineering.50 Sensitivity analysis in optimization typically

relates to shadow prices (Lagrangian multipliers) but, for the

RBC bioreactor, we cannot use these sensitivities because: (1)

the discrete design choices make the shadow prices meaning-

less; and (2) we want to study the parameters globally across

their entire range.
Global sensitivity analysis (GSA), which estimates the

effect of higher level indices across the entire parameter

space,51 has been used in bioprocess engineering contexts

including developing cell culture parameters.52 An alternative

to GSA incorporates principal component analysis.53 It would

be ideal to use GSA for optimizing the hematopoietic cell bio-

reactor, but the Misener et al.24 model has 30 possible parame-

ters and each optimization run requires �300 s (mathematical

optimization is typically more computationally demanding

than mathematical simulation because each optimization may

require many simulations or function calls). There are 435

combinations of two parameters (30 � 29=2) where, if we

consider four levels of each parameter will take 30�29
2

� 42 � 300
s524:2 CPU days; 4060 combinations of three parameters

(902.2 CPU days); 27,405 combinations of four parameters

(24,360 CPU days).
To mitigate, single variable and multivariable sensitivities

analyze which parameter combinations have the most signifi-

cant joint effect. Our strategy is similar to the Morris54 ele-
mentary effects method which copes with computationally

expensive simulation models, but note that moving from a

simulation to an optimization model implies considering opti-

mization solution outputs rather than simulation sensitivities.

For a linear optimization model, we would expect the sensitiv-

ity Si;j to be approximately 0; significantly large values of Si;j
indicate that nonlinearity in the optimization model is affect-

ing the final outcome.

Global topological superstructure optimization

Typical superstructure optimization applications are in

industry; examples include: well scheduling in petroleum

fields,55,56 crude oil scheduling in a petrochemical refinery,57

designing wastewater treatment systems,58–60 and crystalliza-

tion.61 The purpose of Misener et al.24 applying superstructure

optimization to a stem cell bioreactor is simultaneously testing

a range of design variables leading to different superstructure

possibilities; the ANTIGONE algorithm resolves design

choice tradeoffs.62

Figure 3. Optimal design under uncertainty for stem cell biomanufacturing requires incorporating four sets of
mathematical models: (1) optimization, (2) models of mass transfer and cell kinetics, (3) design and oper-
ation, and (4) uncertainty characterization.

This application of the methods described in Figure 1 and the recipe diagramed in Figure 2 finds the optimal bioreactor design
and operation that works under uncertainty and maximizes the RBCs produced while keeping the cost as low as possible. [Color
figure can be viewed at wileyonlinelibrary.com]
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The potential downside of superstructure optimization is that

it is an expensive algorithm; deterministic global optimization

involves divide-and-conquer search. The Misener et al.24 model

therefore uses model sizes involving �200 variables and equa-

tions to achieve the reasonable 300 CPU seconds time perfor-

mance noted in the single variate and multivariate sensitivity

analysis section; limiting the number of parameters is also help-

ful in quantifying parametric uncertainty.

Robust optimization

Robust optimization, a strategy illustrated in Figure 7, finds

the best solution inoculated against uncertainty; it is typically

applied to instances of strict uncertainty where we can antici-

pate a range of possible parametric outcomes but not a proba-

bility distribution.63–65 Optimality is guaranteed in the worst-

case parameter realization and performance is also guaranteed

to improve for the case of a continuum of scenarios.66

Strict uncertainty is most applicable to the RBC-producing

bioreactor because we have no knowledge of a probability dis-

tribution for any of the parameters except for the bioreactor

material properties; see the analysis in Eq. (2) of Misener

et al.24 Beyond assuming a uniform distribution for the param-

eter outcome, it is possible (with more experimental data) to

permit a predetermined probability that a constraint can be

violated; this prevents the recommended result from being too

conservative. For now we focus on worst-case analysis.
Robust optimization is a conservative strategy making the

system more likely to operate within specifications; robust

optimization allows proactively defensive bioreactor design.

One possible problem with optimization is achieving solutions

that are unrealistic because optimization pushes the system to

the very best possible nominal solution. In practical applica-

tion this is an issue because the “global optimum” may be

highly sensitive to small parameter variation (see Figure 7). If

the parameter realization is different than expected, the

“optimal” solution with nominal parameters may perform very

badly in the actual parameter realization. Robust optimization

takes into account the possibility of parameter variation during

the optimization process itself; this yields the best solutions

that are inoculated against uncertainty.

Figure 4. Bioreactor superstructure.15

[Color figure can be viewed at wileyonlinelibrary.com]

Figure 5. Dual hollow fiber bioreactor cross section.

[Color figure can be viewed at wileyonlinelibrary.com]
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Net present value market analysis

NPV analyzes cash flows with respect to the time value of

money; each cash inflow/outflow is discounted to its present

value and the present values are summed

NPVði; NÞ5
XN
t50

Rt

ð11iÞt

where ðt; RtÞ pairs correspond to the time t and amount Rt of

each cash flow and i is the discount rate. We compare the cost

inflows and outflows with respect to the expected: technology

development costs, success probability, revenue stream, and

market share.

Mathematical Modeling Aspects

This section discusses mathematical modeling aspects deal-

ing with introducing an alternative model for erythropoiesis,

that is, RBC production, and a robust optimization framework.

The nominal optimization model is fully characterized else-

where24; the Supporting Information defines the optimization

problem and all relevant symbols in Table S3.

Ordinary differential equation models of hematopoiesis

The Colijn and Mackey31 model for hematopoiesis is the
baseline for our optimal design24; an alternative model for cel-
lular growth, proliferation, and differentiation was defined by
Lobato da Silva et al.30 Figure 8 illustrates both our baseline
and alternative models.

The cell types in Supporting Information Eq. (1) do not
match the cell types defined by our baseline Colijn and
Mackey31 model; both sets of authors take heterogeneous cell
types from hematopoiesis and segment the cells into specific,
definable types. We have already shown24 how to map the
Colijn and Mackey31 cell types onto parameters defined by
Chow et al.67 and Basford et al.68; these parameters connect
the cellular growth, proliferation, and differentiation to the ini-
tialization and mass transfer portions of the model. Supporting
Information Table S2 shows the new initialization and oxygen
consumption parameters corresponding to the cellular defini-
tions of Lobato da Silva et al.30

Robust modeling counterpart

Supporting Information develops a robust counterpart for
nominal oxygen consumption and designs equivalent robust
counterpart models for each of the other uncertain parameters
(see Supporting Information Table S4). This discussion signif-
icantly expands a conference paper69 where we used robust
optimization on the bioreactor model but did not specify the
mathematics.

Results

Misener et al.24 justified a baseline mathematical model of
the RBC-producing bioreactor; this model is repeated in the
Supporting Information. Supporting Information Table S3
defines the model indices, parameters, and variables. For the
baseline mathematical model, we found a deterministic global
optimum of $277 per unit of RBC (339 reactors; $0.82/reac-
tor) where the material cost per reactor (after being lowered
by massive parallelization) is driven by half-life decay of EPO
($0.298) and SCF ($0.512). These bioreactor results compare
favorably to the $8330 needed for 2-D static culture.70

The following sections analyze the solution robustness via
single variate and multivariate parameter sensitivity analysis,
CFD modeling and exchanging models of hematopoiesis, and
robust optimization. We show that, for the RBC-producing
bioreactor, the parameters interacting the most nonlinearly are
those affecting the very smallest bioreactor scales. From a
model uncertainty perspective, we show that and alternative
hollow fiber placement and an alternative hematopoiesis
model can be reformulated as parameter uncertainty and a
10% cost increase, respectively. Then, we directly use optimi-
zation under uncertainty to determine a more robust bioreactor
configuration. Finally, we use our analysis to consider the

Figure 6. Krogh approximation applied to the dual hollow fiber bioreactor.

[Color figure can be viewed at wileyonlinelibrary.com]

Figure 7. Robust optimization finds the best solution
inoculated against parametric uncertainty;
here we use it to produce a proactively
defensive bioreactor design that takes into
account the possibility of parameter variation.

Optimality is guaranteed in the worst-case parameter
realization (a) and performance is also guaranteed to
improve for the case of a continuum of scenarios (b).
[Color figure can be viewed at wileyonlinelibrary.com]
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Net present value market analysis

NPV analyzes cash flows with respect to the time value of

money; each cash inflow/outflow is discounted to its present

value and the present values are summed

NPVði; NÞ5
XN
t50

Rt

ð11iÞt

where ðt; RtÞ pairs correspond to the time t and amount Rt of

each cash flow and i is the discount rate. We compare the cost

inflows and outflows with respect to the expected: technology

development costs, success probability, revenue stream, and

market share.

Mathematical Modeling Aspects

This section discusses mathematical modeling aspects deal-

ing with introducing an alternative model for erythropoiesis,

that is, RBC production, and a robust optimization framework.

The nominal optimization model is fully characterized else-

where24; the Supporting Information defines the optimization

problem and all relevant symbols in Table S3.

Ordinary differential equation models of hematopoiesis

The Colijn and Mackey31 model for hematopoiesis is the
baseline for our optimal design24; an alternative model for cel-
lular growth, proliferation, and differentiation was defined by
Lobato da Silva et al.30 Figure 8 illustrates both our baseline
and alternative models.

The cell types in Supporting Information Eq. (1) do not
match the cell types defined by our baseline Colijn and
Mackey31 model; both sets of authors take heterogeneous cell
types from hematopoiesis and segment the cells into specific,
definable types. We have already shown24 how to map the
Colijn and Mackey31 cell types onto parameters defined by
Chow et al.67 and Basford et al.68; these parameters connect
the cellular growth, proliferation, and differentiation to the ini-
tialization and mass transfer portions of the model. Supporting
Information Table S2 shows the new initialization and oxygen
consumption parameters corresponding to the cellular defini-
tions of Lobato da Silva et al.30

Robust modeling counterpart

Supporting Information develops a robust counterpart for
nominal oxygen consumption and designs equivalent robust
counterpart models for each of the other uncertain parameters
(see Supporting Information Table S4). This discussion signif-
icantly expands a conference paper69 where we used robust
optimization on the bioreactor model but did not specify the
mathematics.

Results

Misener et al.24 justified a baseline mathematical model of
the RBC-producing bioreactor; this model is repeated in the
Supporting Information. Supporting Information Table S3
defines the model indices, parameters, and variables. For the
baseline mathematical model, we found a deterministic global
optimum of $277 per unit of RBC (339 reactors; $0.82/reac-
tor) where the material cost per reactor (after being lowered
by massive parallelization) is driven by half-life decay of EPO
($0.298) and SCF ($0.512). These bioreactor results compare
favorably to the $8330 needed for 2-D static culture.70

The following sections analyze the solution robustness via
single variate and multivariate parameter sensitivity analysis,
CFD modeling and exchanging models of hematopoiesis, and
robust optimization. We show that, for the RBC-producing
bioreactor, the parameters interacting the most nonlinearly are
those affecting the very smallest bioreactor scales. From a
model uncertainty perspective, we show that and alternative
hollow fiber placement and an alternative hematopoiesis
model can be reformulated as parameter uncertainty and a
10% cost increase, respectively. Then, we directly use optimi-
zation under uncertainty to determine a more robust bioreactor
configuration. Finally, we use our analysis to consider the

Figure 6. Krogh approximation applied to the dual hollow fiber bioreactor.

[Color figure can be viewed at wileyonlinelibrary.com]

Figure 7. Robust optimization finds the best solution
inoculated against parametric uncertainty;
here we use it to produce a proactively
defensive bioreactor design that takes into
account the possibility of parameter variation.

Optimality is guaranteed in the worst-case parameter
realization (a) and performance is also guaranteed to
improve for the case of a continuum of scenarios (b).
[Color figure can be viewed at wileyonlinelibrary.com]
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potential for the RBC-producing bioreactor to be a disruptive

technology.

Single variate and multivariate parameter sensitivity

analysis

The baseline results are based partially on assumptions of

parameters having specific values.24 For example, we assume

that glucose uptake and lactate production are proportional to

our experimental results14 and that every type of cell con-

sumes metabolites/nutrients and produces waste in the same

way. But Collins et al.71 show that nutrient consumption levels

depend on the percentages of colony-forming cells (CFU-GM

and BFU-E); there is similar uncertainty in other parameters.

As described in the Computational Methods section, we vary

the 30 uncertain parameters over the Supporting Information

Table S4 uncertainty ranges. Parameters with known error

bars vary within their expected uncertainty levels; the remain-

ing parameters were allowed to take values 50% (L1), 90%

(L2), 110% (U1), and 150% (U2) of their nominal values.
Of the 30 parameters, 9 induced the global optimum to vary

by 10% or more; these are presented in Supporting Informa-

tion Table S5. The cellular flux uncertainty ĴCells induces the
most variability; this is in line with our experimental observa-

tions that cells are being impeded from pushing through the

ceramic hollow fibers of the bioreactor.72,73 Next we investi-

gate bivariate sensitivity; jointly changing the values of two

Figure 8. The Lobato da Silva et al.30 alternative model of hematopoiesis (illustrated in subfigures a–c) allows us
to evaluate the possible error due to selecting the baseline Colijn and Mackey31 model 2.

[Color figure can be viewed at wileyonlinelibrary.com]
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parameters may have a nonlinear effect because the optimiza-

tion model itself is nonlinear.
We see an interesting effect in Supporting Information

Table S6 of bivariate sensitivities Si;j: 13 of the 24 entries con-

tributing to inducing >15% change are related to cellular

kinetics and an additional 7 parameter entries are related to

cellular consumption of nutrients and production of waste.

These results are interesting because they imply that the

parameters interacting the most nonlinearly in the model are

those affecting the very smallest scales in the bioreactor. Note

that it is common to observe that very small length and time

scales in a simulation model may profoundly affect the largest

length and time scales,74,75 but this effect is more rare in engi-

neering optimization models. This interaction of many length

and time scales is one of the ways that superstructure optimi-

zation and its associated sensitivity analysis have to change

from its original applications in industrial petrochemical sys-

tems toward tissue engineering.

Exchanging models of mass transfer and hematopoiesis

The Computational Fluid Dynamics section in the Support-

ing Information describes how we set up the CFD analysis;

Figure 9 and Supporting Information Figure S13 show results.

The purpose of the CFD is to stress-test the analytical Krogh45

approximation with respect to fluid flow within the experimen-

tally observed bioreactors. Figure 9, which diagrams the biore-

actor fraction limited by O2, indicates that, at least for one

possible hollow fiber configuration, the Krogh and 3-D CFD

models have similar performance. But, at this writing, we

have little control over bioreactor hollow fiber placement and

do not know the hollow fiber placement until the bioreactor is

cut open at the completion of an experiment. Supporting Infor-

mation Figure S13 indicate that the variability induced by

uncertainty in hollow fiber placement is more significant than

the Kroghian vs. 3-D CFD models. Based on these results, the

Krogh approximation is well suited for this application; we

assume that the parameter sensitivity analysis incorporates

uncertainty due to hollow fiber placement.

In addition to switching between Kroghian and CFD mod-

els, we also considered replacing the hematopoiesis model of

Colijn and Mackey31 with the model of Lobato da Silva

et al.30; this change moved the price point on the reactor

from $277 per unit of RBC to $306 per unit of RBC (a

roughly 10% increase) but otherwise left the major design

decisions the same from the ones we previously reported.24

The reason the design decisions stay constant is that,

although the cell growth model has changed and the cells

produce fewer RBC, the basic cellular need for nutrient

delivery and waste clearance has not changed. This 10% cost

increase with respect to cells yielded bounds the effect of

using the wrong hematopoiesis model to describe the system;

the Colijn and Mackey31 model of normal human hematopoi-

esis is probably too optimistic for an ex vivo system whereas

the Lobato da Silva et al.30 2-D culture model may be too

pessimistic for the biomimetic bioreactor.

Robust optimization

Deterministic global optimization evaluated tradeoffs

between multiple design parameters over multiple operating

phases24; prior work had only optimized hollow fiber bioreac-

tors over single variables under steady state assump-

tions.38,42–44 But the nominal model is subject to uncertainty

not only in the parameters but also in the model formulation

itself; this uncertainty is the focus of the current article. Our

quantitative image analysis confirms that key sources of uncer-

tainty include27:
� Variable distribution of hollow fibers; the Krogh45

approximation of evenly distributed, noninteracting hollow

fibers may not be valid for the RBC producing bioreactor.
� Uncertain mass-transfer coefficients including: species

diffusivities; hollow fiber and polyurethane scaffold porosi-

ties and pore structures; cellular flux leaving the scaffold.
� Species reaction rates of the five representative species

(Glc, Lac, O2, EPO, and SCF) by each of the four represen-

tative cell types (hematopoietic stem cell, Gran, Leuk, and

RBC).
� Price and half-life decay of GFs.
� Cellular growth, proliferation, differentiation; parame-

ters and the underlying model.
Using robust optimization, the nominal price for a unit of

RBC increases from $277 to $383. This is a worst case esti-

mate based on every one of the parameters taking the worst

case realization with respect to Supporting Information Table

S4; more bioreactor data would help us design more reason-

able uncertainty rules which would allow moderate increases

in the price while still handling the uncertainty in a reason-

able way. But even before we have complete data on how the

robust optimization parameters can be modified, it is impor-

tant to note the way in which robust optimization proposes

to change the bioreactor model. As expected, the robust

framework recommends more reactors and GFs, but robust

optimization also recommends a different configuration of

polymeric and ceramic hollow fibers than the nominal opti-

mization problem. Specifically, the hollow fiber type and

number are limiting constraints robust framework recom-

mends increasing the number of ceramic hollow fibers and

decreasing the number of polymeric hollow fibers. The

robust model assumes that fewer cells are likely to grow in

the robust reactor but that more of the produced RBC is

likely to exit the hollow fiber.

Figure 9. Comparison between the Krogh approxima-
tion and CFD Results.

Atmospheric refers to O2 levels and 2x atmospheric
refers to a bioreactor with artificially increased O2 lev-
els. This is only one run with evenly spaced hollow
fibers. Note that there is more variability between dif-
ferent hollow fiber configurations, for example, Sup-
porting Information Figure S13, than between the
Krogh and CFD results. [Color figure can be viewed at
wileyonlinelibrary.com]
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parameters may have a nonlinear effect because the optimiza-

tion model itself is nonlinear.
We see an interesting effect in Supporting Information

Table S6 of bivariate sensitivities Si;j: 13 of the 24 entries con-

tributing to inducing >15% change are related to cellular

kinetics and an additional 7 parameter entries are related to

cellular consumption of nutrients and production of waste.

These results are interesting because they imply that the

parameters interacting the most nonlinearly in the model are

those affecting the very smallest scales in the bioreactor. Note

that it is common to observe that very small length and time

scales in a simulation model may profoundly affect the largest

length and time scales,74,75 but this effect is more rare in engi-

neering optimization models. This interaction of many length

and time scales is one of the ways that superstructure optimi-

zation and its associated sensitivity analysis have to change

from its original applications in industrial petrochemical sys-

tems toward tissue engineering.

Exchanging models of mass transfer and hematopoiesis

The Computational Fluid Dynamics section in the Support-

ing Information describes how we set up the CFD analysis;

Figure 9 and Supporting Information Figure S13 show results.

The purpose of the CFD is to stress-test the analytical Krogh45

approximation with respect to fluid flow within the experimen-

tally observed bioreactors. Figure 9, which diagrams the biore-

actor fraction limited by O2, indicates that, at least for one

possible hollow fiber configuration, the Krogh and 3-D CFD

models have similar performance. But, at this writing, we

have little control over bioreactor hollow fiber placement and

do not know the hollow fiber placement until the bioreactor is

cut open at the completion of an experiment. Supporting Infor-

mation Figure S13 indicate that the variability induced by

uncertainty in hollow fiber placement is more significant than

the Kroghian vs. 3-D CFD models. Based on these results, the

Krogh approximation is well suited for this application; we

assume that the parameter sensitivity analysis incorporates

uncertainty due to hollow fiber placement.

In addition to switching between Kroghian and CFD mod-

els, we also considered replacing the hematopoiesis model of

Colijn and Mackey31 with the model of Lobato da Silva

et al.30; this change moved the price point on the reactor

from $277 per unit of RBC to $306 per unit of RBC (a

roughly 10% increase) but otherwise left the major design

decisions the same from the ones we previously reported.24

The reason the design decisions stay constant is that,

although the cell growth model has changed and the cells

produce fewer RBC, the basic cellular need for nutrient

delivery and waste clearance has not changed. This 10% cost

increase with respect to cells yielded bounds the effect of

using the wrong hematopoiesis model to describe the system;

the Colijn and Mackey31 model of normal human hematopoi-

esis is probably too optimistic for an ex vivo system whereas

the Lobato da Silva et al.30 2-D culture model may be too

pessimistic for the biomimetic bioreactor.

Robust optimization

Deterministic global optimization evaluated tradeoffs

between multiple design parameters over multiple operating

phases24; prior work had only optimized hollow fiber bioreac-

tors over single variables under steady state assump-

tions.38,42–44 But the nominal model is subject to uncertainty

not only in the parameters but also in the model formulation

itself; this uncertainty is the focus of the current article. Our

quantitative image analysis confirms that key sources of uncer-

tainty include27:
� Variable distribution of hollow fibers; the Krogh45

approximation of evenly distributed, noninteracting hollow

fibers may not be valid for the RBC producing bioreactor.
� Uncertain mass-transfer coefficients including: species

diffusivities; hollow fiber and polyurethane scaffold porosi-

ties and pore structures; cellular flux leaving the scaffold.
� Species reaction rates of the five representative species

(Glc, Lac, O2, EPO, and SCF) by each of the four represen-

tative cell types (hematopoietic stem cell, Gran, Leuk, and

RBC).
� Price and half-life decay of GFs.
� Cellular growth, proliferation, differentiation; parame-

ters and the underlying model.
Using robust optimization, the nominal price for a unit of

RBC increases from $277 to $383. This is a worst case esti-

mate based on every one of the parameters taking the worst

case realization with respect to Supporting Information Table

S4; more bioreactor data would help us design more reason-

able uncertainty rules which would allow moderate increases

in the price while still handling the uncertainty in a reason-

able way. But even before we have complete data on how the

robust optimization parameters can be modified, it is impor-

tant to note the way in which robust optimization proposes

to change the bioreactor model. As expected, the robust

framework recommends more reactors and GFs, but robust

optimization also recommends a different configuration of

polymeric and ceramic hollow fibers than the nominal opti-

mization problem. Specifically, the hollow fiber type and

number are limiting constraints robust framework recom-

mends increasing the number of ceramic hollow fibers and

decreasing the number of polymeric hollow fibers. The

robust model assumes that fewer cells are likely to grow in

the robust reactor but that more of the produced RBC is

likely to exit the hollow fiber.

Figure 9. Comparison between the Krogh approxima-
tion and CFD Results.

Atmospheric refers to O2 levels and 2x atmospheric
refers to a bioreactor with artificially increased O2 lev-
els. This is only one run with evenly spaced hollow
fibers. Note that there is more variability between dif-
ferent hollow fiber configurations, for example, Sup-
porting Information Figure S13, than between the
Krogh and CFD results. [Color figure can be viewed at
wileyonlinelibrary.com]
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Analyzing the potential to be disruptive technology

We previously estimated the bioreactor material cost,24 but

we have thus far neglected the time-value of money. To design

an NPV market analysis, we assume:
i. Our aim is to create a disruptive technology19,20; there-

fore we only have 2 years to get a fully operational product.
ii. Based on Table 1 and the experimental Gantt charts in

Figure 10: one operator can create and culture two bioreac-

tors in parallel every 48 days and each operator can manage

seven new experiments per year in duplicate.
iii. All material properties have been rigorously characterized.
iv. Species concentrations measurements are accurate

both into and out of the reactor.
v. We can quantitatively analyze each reactor at the end

of an experiment, for example, using image analysis on bio-

reactor cross sections.27

We consider many types of uncertainty and design deci-

sions, but assumptions (i)–(v) imply that all uncertainty can

be handled by robust optimization except for uncertainty asso-
ciated with the cells and their growth/proliferation/differentia-

tion. So there are really only five design decisions which can
induce unexpected changes: (1) bioreactor seeding density and

(2–5) concentrations of O2, SCF, EPO, and glucose entering
the bioreactor.

Based on the ODE model systems,30,33 the cell kinetics
functions are nonlinear. We aim to build a surrogate function

using response surface methods76; this surrogate function
may have similarities to the white-box ODE hematopoiesis

models,30,31 but we cannot guarantee the form for either model
and therefore the experiments will build a surrogate model

over time. We expect that building a 5-D response curve
which is also informed by the ODE models mentioned previ-

ously will take on the order of 30, for example, � 25 if we

consider a corner point design, experiments if we assume that
the response is no more than quadratic. Therefore, in the first

year, the project should employ four people to complete a total

Table 1. Labor Time

Timeline Days Hours/Day Person/Days

Fiber creation Fiber milling/extrusion 5 5 3.125 Sequential
StepsFiber sintering 4 1 0.5

Total 9 3.625

Bioreactor fabrication Fiber potting 1 4 0.5 Sequential
StepsScaffold formation 11 1 1.375

Total 12 1.875

Precondition and culture Coating 3 4 1.5

Sequential
Steps

Sterilization 1 11 1.375
Conditioning 3 0.5 0.1875
Seeding 1 14 1.75
Culture 35 2 8.75
Total 43 13.5625

Terminal analyses 5 6 3.75
Total time expenditure 69 22.8125

Figure 10. Labor time for fabricating the dual hollow fiber bioreactors.

[Color figure can be viewed at wileyonlinelibrary.com]
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of 28 experiments; this will fully characterize the space. After
that, the same four people will do 28 more experiments to

exploit areas around the optimum a bit better.
But there is no reason to do experiments when the bioreac-

tor is not going to be transformative. We consider several sce-
narios. The first is that we can construct the bioreactor in the

price range of rare blood, $1150 to $3025 per unit RBC70; we
take the average number of units rare blood requested each
year in the United States of America (1800) and posit: (1) if

there was greater rare blood availability, then it would be used
more frequently and (2) that the proportion of rare blood used
in the First World is proportional to that used in the United

States of America. Therefore, we multiply the current rare
blood usage, 1800 units per year in the United States of Amer-
ica by five to incorporate better availability and scale by the

First World population (2:03109=3:2310856:25) to account
for total usage; we conclude that the rare blood market share is

5:6253104 units per year. We also posit that the total market
share for blood shortages at storage banks and hospitals is a
fraction of the total market share for blood and corresponds to

the 10.3% of hospitals which experience at least 1 day yearly
when blood shortages cannot be met70; those data imply 9:23
107 � 0:103=36552:603104 units of blood needed to cover

yearly shortages. We also estimate that the military would be
willing to pay for 5:03104 units of blood per year for security
and defense. We therefore estimate that the entire market

share of rare blood is 1:323105 units per year; note that this
an underestimate of the rare blood needed since it excludes
Africa where there are significantly higher populations of rare

blood types and rare blood diseases.77,78 Assuming a 11% dis-
count rate for NPV79 and a 10.4% chance success chance of
clearing clinical trials,80 we say that for the first two years our

costs will scale with the four parallel operators; we assume
that each person plus lab and material costs will be $150k per

year so that in the first two years we will pay out $600k per
year. In years 3–20, we assume that we have 40% market
share.81 In total, the payout is (using NPV) $1:163108 which

does not compensate for the expected $1:0983109 prehuman
capitalized cost of an average compound plus the $1:4603109

clinical cost of the average compound.
But if we could compete with the current human transfusion

market and price the product at $225, then we could expect
that the total market share would be $9:23107 per year. Using
the same assumption of $63105 per year for 2 years, and 40%

market saturation in year 3 and thereafter,81 the revenue would
be $6:083109 over 20 years; this is enough to clear regulatory
approval in both prehuman and clinical trials. If we have mis-

calculated the discount rate by 10%, then the revenue could be
as little as $4:793109 or as much as $7:173109 over 20 years.

Our current estimate for robustified bioreactor design is that

the bioreactor is priced at $383 in the worst case; we assume
that storage and delivery is a further $225 (since this is the
storage and delivery price for the already-free blood) and

assume that the final blood price would be $800; at that price
we can beat the rare blood market by a significant fraction and
therefore the market share is an order of magnitude larger than

for rare blood. Then the payout would be $3:0963108 which
is still not enough to clear regulatory. We estimate that the
price point becomes more reasonable when we are able to

charge $500 and we therefore estimate that at that point the
blood product could cover 20% of the total market since peo-
ple may be willing to pay more for the ease-of use. Then the

payout would be $2:73109 over the 20 years and therefore

worthwhile. To get down to $500, we need several things in
the bioreactor to be better. First, the cell flux through the
ceramic hollow fibers needs to be better; to manage this is
basically a material question to ask whether it is possible to
have hollow fibers through which the cells can migrate without
shear-related damage. With better production rates through the
membrane, we expect that this could be a disruptive technol-
ogy; the disruptive potential of the technology radically
increases if this RBC production technology significantly cuts
down on the current 1% immunologic reaction rate for RBC
transfusions.82 Also, the recently developed immortalized
adult human erythroid line12 may help the bioreactor by allow-
ing production runs longer than 30 days.

Discussion

Although the nominal optimization model indicated that we
could design a bioreactor costing roughly $277 per unit of
RBC,24 the model did not incorporate uncertainty and there-
fore we had no way of evaluating if our design decisions
would stand up to scrutiny. Based on this analysis, we find
that, for this particular bioreactor, there are a number of
parameters including cellular flux, species half-life, and cellu-
lar kinetic parameters which should be analyzed in greater
detail to find the exact price point of the bioreactor. For this
hematopoietic cell bioreactor, the robust framework recom-
mends hedging against uncertainty with more reactors and
GFs. The robust framework recommends increasing the num-
ber of ceramic hollow fibers and decreasing the number of
polymeric hollow fibers with respect to the nominal optimum.
We also note that robust optimization is a useful framework
for explicitly incorporating the parameter uncertainty into the
optimization model; we can defensively design the bioreactor
to accommodate known parameter variability.

There are several novel items here. First, neither superstruc-
ture optimization nor robust optimization have been applied to
stem cell tissue engineering; our proposed computational
framework adapts techniques which have proved successful in
well-established industries and transforming these strategies to
optimize stem cell bioprocesses. One significant way that
superstructure optimization changes from heavy industries to
stem cell bioprocessing is the need to incorporate more orders
of magnitude into the constraint set. In examples such as water
treatment, there will be small quantities such as trace metals
and small amounts of sulfur, but these may be linearly scaled
such that the condition number of the constraint matrix is
small, that is, the problem is well scaled. The superstructure
optimization problem for stem cell bioprocessing, however,
involves many orders of magnitude ranging from the individ-
ual cellular reactions to the number of cells produced. The
complexity here is the interaction between different scales.

For robust optimization, we quantitatively ask how much
risk is acceptable. In petrochemical process optimization, for
example, engineers evaluate how close they are willing to get
to environmental constraints; violating the law may result in a
fine while staying too conservative may reduce product mar-
gins. Moving toward a clinical application, the risk incurred is
that the process does not make sufficient blood for a patient in
need. On the other hand, acting very conservatively may
increase the price dramatically; robust optimization weighs
the risk between not providing a necessary product and mak-
ing it too expensively.

Combining many different uncertainty analysis strategies
into one model is especially powerful; stem cell bioprocessing

10 DOI 10.1002/aic Published on behalf of the AIChE 2017 Vol. 00, No. 00 AIChE Journal3020 DOI 10.1002/aic Published on behalf of the AIChE August 2018  Vol. 64, No. 8 AIChE Journal



of 28 experiments; this will fully characterize the space. After
that, the same four people will do 28 more experiments to

exploit areas around the optimum a bit better.
But there is no reason to do experiments when the bioreac-

tor is not going to be transformative. We consider several sce-
narios. The first is that we can construct the bioreactor in the

price range of rare blood, $1150 to $3025 per unit RBC70; we
take the average number of units rare blood requested each
year in the United States of America (1800) and posit: (1) if

there was greater rare blood availability, then it would be used
more frequently and (2) that the proportion of rare blood used
in the First World is proportional to that used in the United

States of America. Therefore, we multiply the current rare
blood usage, 1800 units per year in the United States of Amer-
ica by five to incorporate better availability and scale by the

First World population (2:03109=3:2310856:25) to account
for total usage; we conclude that the rare blood market share is

5:6253104 units per year. We also posit that the total market
share for blood shortages at storage banks and hospitals is a
fraction of the total market share for blood and corresponds to

the 10.3% of hospitals which experience at least 1 day yearly
when blood shortages cannot be met70; those data imply 9:23
107 � 0:103=36552:603104 units of blood needed to cover

yearly shortages. We also estimate that the military would be
willing to pay for 5:03104 units of blood per year for security
and defense. We therefore estimate that the entire market

share of rare blood is 1:323105 units per year; note that this
an underestimate of the rare blood needed since it excludes
Africa where there are significantly higher populations of rare

blood types and rare blood diseases.77,78 Assuming a 11% dis-
count rate for NPV79 and a 10.4% chance success chance of
clearing clinical trials,80 we say that for the first two years our

costs will scale with the four parallel operators; we assume
that each person plus lab and material costs will be $150k per

year so that in the first two years we will pay out $600k per
year. In years 3–20, we assume that we have 40% market
share.81 In total, the payout is (using NPV) $1:163108 which

does not compensate for the expected $1:0983109 prehuman
capitalized cost of an average compound plus the $1:4603109

clinical cost of the average compound.
But if we could compete with the current human transfusion

market and price the product at $225, then we could expect
that the total market share would be $9:23107 per year. Using
the same assumption of $63105 per year for 2 years, and 40%

market saturation in year 3 and thereafter,81 the revenue would
be $6:083109 over 20 years; this is enough to clear regulatory
approval in both prehuman and clinical trials. If we have mis-

calculated the discount rate by 10%, then the revenue could be
as little as $4:793109 or as much as $7:173109 over 20 years.

Our current estimate for robustified bioreactor design is that

the bioreactor is priced at $383 in the worst case; we assume
that storage and delivery is a further $225 (since this is the
storage and delivery price for the already-free blood) and

assume that the final blood price would be $800; at that price
we can beat the rare blood market by a significant fraction and
therefore the market share is an order of magnitude larger than

for rare blood. Then the payout would be $3:0963108 which
is still not enough to clear regulatory. We estimate that the
price point becomes more reasonable when we are able to

charge $500 and we therefore estimate that at that point the
blood product could cover 20% of the total market since peo-
ple may be willing to pay more for the ease-of use. Then the

payout would be $2:73109 over the 20 years and therefore

worthwhile. To get down to $500, we need several things in
the bioreactor to be better. First, the cell flux through the
ceramic hollow fibers needs to be better; to manage this is
basically a material question to ask whether it is possible to
have hollow fibers through which the cells can migrate without
shear-related damage. With better production rates through the
membrane, we expect that this could be a disruptive technol-
ogy; the disruptive potential of the technology radically
increases if this RBC production technology significantly cuts
down on the current 1% immunologic reaction rate for RBC
transfusions.82 Also, the recently developed immortalized
adult human erythroid line12 may help the bioreactor by allow-
ing production runs longer than 30 days.

Discussion

Although the nominal optimization model indicated that we
could design a bioreactor costing roughly $277 per unit of
RBC,24 the model did not incorporate uncertainty and there-
fore we had no way of evaluating if our design decisions
would stand up to scrutiny. Based on this analysis, we find
that, for this particular bioreactor, there are a number of
parameters including cellular flux, species half-life, and cellu-
lar kinetic parameters which should be analyzed in greater
detail to find the exact price point of the bioreactor. For this
hematopoietic cell bioreactor, the robust framework recom-
mends hedging against uncertainty with more reactors and
GFs. The robust framework recommends increasing the num-
ber of ceramic hollow fibers and decreasing the number of
polymeric hollow fibers with respect to the nominal optimum.
We also note that robust optimization is a useful framework
for explicitly incorporating the parameter uncertainty into the
optimization model; we can defensively design the bioreactor
to accommodate known parameter variability.

There are several novel items here. First, neither superstruc-
ture optimization nor robust optimization have been applied to
stem cell tissue engineering; our proposed computational
framework adapts techniques which have proved successful in
well-established industries and transforming these strategies to
optimize stem cell bioprocesses. One significant way that
superstructure optimization changes from heavy industries to
stem cell bioprocessing is the need to incorporate more orders
of magnitude into the constraint set. In examples such as water
treatment, there will be small quantities such as trace metals
and small amounts of sulfur, but these may be linearly scaled
such that the condition number of the constraint matrix is
small, that is, the problem is well scaled. The superstructure
optimization problem for stem cell bioprocessing, however,
involves many orders of magnitude ranging from the individ-
ual cellular reactions to the number of cells produced. The
complexity here is the interaction between different scales.

For robust optimization, we quantitatively ask how much
risk is acceptable. In petrochemical process optimization, for
example, engineers evaluate how close they are willing to get
to environmental constraints; violating the law may result in a
fine while staying too conservative may reduce product mar-
gins. Moving toward a clinical application, the risk incurred is
that the process does not make sufficient blood for a patient in
need. On the other hand, acting very conservatively may
increase the price dramatically; robust optimization weighs
the risk between not providing a necessary product and mak-
ing it too expensively.

Combining many different uncertainty analysis strategies
into one model is especially powerful; stem cell bioprocessing
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does not admit certain models or certain parameters. Modeling
and optimization quantitatively characterize a system with
minimal experiments, but we cannot tie ourselves to a single
uncertainty analysis method; we want to build consensus
between disparate analysis types. The different framework
components reinforce one another; the computational techni-
ques illustrated in Figure 1 are combined using the Figure 2
recipe.

Conclusions

This article proposes a framework for stem cell bioreactor
design under uncertainty and analyzes the associated mathe-
matical tool kit. In stem cell biomanufacturing, an optimal but
nonrobust design may be sensitive to model or parametric
uncertainty. Our framework directly incorporates uncertainty
considerations and therefore fits into the broader vision of
QbD.
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