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Summary

Cancer immunotherapy focuses mainly on anti-tumour activity of CD8+

cytotoxic T lymphocytes (CTLs). CTLs can directly kill all tumour cell

types, provided they carry recognizable antigens. However, CD4+ T cells

also play important roles in anti-tumour immunity. CD4+ T cells can

either suppress or promote the anti-tumour CTL response, either in sec-

ondary lymphoid organs or in the tumour. In this review, we highlight

opposing mechanisms of conventional and regulatory T cells at both sites.

We outline how current cancer immunotherapy strategies affect both sub-

sets and how selective modulation of each subset is important to maxi-

mize the clinical response of cancer patients.
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Introduction

CD8+ cytotoxic T lymphocytes (CTLs) are a major force

of adaptive immunity and a perfect weapon to combat

cancer. They can specifically recognize intracellular alter-

ations as peptides presented by major histocompatibility

complex (MHC) class I on almost all body cells and effi-

ciently mediate cytotoxicity. To ensure their beneficial

role, they are controlled on multiple levels. Negative

selection of self-reactive T cells in the thymus is a pri-

mary mechanism by which immunological self-tolerance

is maintained. Nevertheless, self-reactive T cells are found

in tissues and blood of healthy individuals that have

apparently escaped from this selection process.1 Such self-

reactive T cells need to be controlled by additional mech-

anisms to avoid harmful autoimmune responses. For this

purpose, peripheral tolerance mechanisms exist that rely

on the non-activated state of dendritic cells (DCs) and

the activity of specialized regulatory T (Treg) cells.2

Surveillance against (non-virally associated) cancers relies

on self-reactive T cells, as tumour cells harbour antigens

derived from endogenous proteins. Furthermore, tumour

cells may not exude any molecules that can activate DCs.

For these reasons, peripheral tolerance may have to be

broken to elicit a CTL response to cancer.3 Furthermore,

CTL responses rely for the optimization and maintenance

of their functionality on other immune cells. At the cen-

tre of keeping the balance between harmful and beneficial

CTL responses lie CD4+ T cells.

CD4+ T cells recognize antigen in the context of MHC

class II, which is primarily found on immune cells. A key

role of CD4+ T cells is therefore to modulate the state and

function of other immune cells. CD4+ T cells represent a

diverse cell population with many differentiation states

that have all been implicated in controlling immune

responses against cancer.4 On one side of the spectrum are

CD4+ T conventional (Tconv) cells that promote anti-

tumour immunity, either by direct elimination of MHC

class II+ tumour cells or indirectly through modulation of

the tumour microenvironment.4 Moreover, in secondary

lymphoid organs, CD4+ T cells improve the magnitude

and quality of B-cell responses and CTL responses. On the

other side of the spectrum are CD4+ Treg cells that sup-

press CTL responses, either directly by production of inhi-

bitory cytokines or indirectly by influencing state and

function of DCs and other (innate) immune cell types.5

In this review, we describe the opposing roles of CD4+

T cells in anti-tumour immunity. We outline the mecha-

nisms by which Tconv and Treg cells can regulate the

immune response at both the priming and the effector

site, and how modulating these cell subsets can improve

the efficacy of cancer immunotherapy.

The role of Tconv cells at the priming site

CD4+ T cells can directly recognize antigen on tumour

cells, in case these express MHC class II. However, Tconv

cells mediate most of their immunomodulatory functions
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by recognition of antigen on specialized antigen-presenting

cells such as DCs and macrophages (Fig. 1). In the 1980s it

was acknowledged that CD4+ T cells can provide help for

CTL priming6 and later, DCs were found to serve as a plat-

form by which the effects of CD4+ T-cell help are medi-

ated.7 Accumulated data in various experimental systems

suggested that CD4+ T-cell help is only required to elicit a

primary CTL response when direct activation of DCs by

pathogen- or danger-associated molecular patterns is lim-

ited.6 This was later suggested to depend on the amount of

type I interferon (IFN) produced by such antigen-present-

ing cells.8 However, CD4+ T-cell help was always required

to induce and maintain functional memory CD8+ T-cell

responses, even when strong inflammatory stimuli were

present.6 In agreement with limiting innate stimuli, CTL

responses against cancer often rely on the provision of

CD4+ T-cell help.9–11 Moreover, effective therapeutic vac-

cination strategies against cancer have been recently shown

to induce potent anti-tumour CD4+ T-cell responses direc-

ted against mutated or non-mutated cancer antigens.12–14

A primary mechanism by which CD4+ T cells ‘help’ to

induce CD8+ T-cell responses is by increasing antigen-

presenting and co-stimulatory capacities of DCs. A key

signal in this so-called DC ‘licensing’ is delivered by inter-

action between CD40 ligand (CD40L) on the cognate

CD4+ T cell and CD40 on the DC, which allows for func-

tional maturation of the DC.15 In a newly recognized sce-

nario elucidated by intravital microscopy in mice, T-cell

priming occurs in two steps: CD4+ and CD8+ T cells are

first activated independently of each other by distinct DC

subsets at separate anatomical locations within the lymph

node. In a second priming step, they both interact in a

cognate fashion with the same XC-chemokine receptor 1

(XCR1)+ lymph node-resident DC. This DC provides the

platform for the delivery of CD4+ T-cell help signals to

the CD8+ T cell.16,17 Mouse studies show that following

CD4+ T-cell-mediated licensing, the ability of DCs to

produce certain cytokines and co-stimulatory ligands is

optimized, which serves CD8+ T-cell responsiveness. DC-

derived interleukin-12 (IL-12) and IL-15 play a role in

inducing effector and memory CTL differentiation down-

stream of CD4+ T-cell help.18,19 Furthermore, co-

stimulation of CD27 on CD8+ T cells through CD70 on

DCs is an essential downstream effect of CD4+ T-cell help

for survival, effector and memory differentiation of

CTLs.20–22 CD40-stimulated DCs also up-regulate CD80/

86, which by stimulating CD28 on CTLs provides signals

for cell cycle initiation, survival and metabolism.23 Co-sti-

mulatory signals through CD27 and CD28 may support

CTL responses directly, and in part indirectly, via up-reg-

ulation of IL-12 and IL-2 receptors on CD8+ T cells,21,24

suggesting an interplay between cytokine and co-stimula-

tory signals mediated by CD4+ T-cell help.

The engagement of CD4+ T cells during priming can

promote subsequent CD8+ T-cell–DC interactions by che-

mokine guidance. It has been shown that after initial cog-

nate contact with CD4+ T cells, DCs start to produce

CCL3/4, which attracts CCR5-expressing CD8+ T cells to

the site of DC–CD4+ T-cell interaction.25 Tumour-primed

CD4+ T cells were also shown to secrete high levels of

CCL5 that recruited CCR5+ DCs.26 CD4+ T cells can also

facilitate the entry of naive CD8+ T cells into the draining

lymph nodes through the expansion of the arteriole feed-

ing the draining lymph node.27 Moreover, in the process

termed as transphagocytosis, CD4+ T cells were found to

acquire, process and present antigens to naive CD8+ T

cells, which induced CTL memory differentiation and

optimal anti-tumour responses.28,29

Engagement of CD4+ T-cell help and the resulting CD27

co-stimulation apparently lowers the threshold for CD8+

T-cell priming, as it results in broadening the T-cell recep-

tor (TCR) repertoire of responding (tumour-reactive)

CD8+ T cells by the inclusion of low-affinity clones.30–32

This is favourable for anti-tumour responses that may be

of low-affinity due to negative selection of the tumour-

reactive TCR repertoire in the thymus. Moreover, helped

CTLs have a better cell-intrinsic ability to mediate anti-

tumour responses. We have recently revealed a gene signa-

ture of helped CTLs and validated multiple molecular

mechanisms by which helped CTL responses are opti-

mized.21 Engagement of CD4+ T-cell help enhanced cyto-

toxic, migratory and metabolic functions of CTLs. Helped

CTLs expressed higher levels of effector molecules such as

tumour necrosis factor, granzyme B and IFN-c and lower

Figure 1. The roles of conventional (Tconv) and regulatory (Treg) T cells in secondary lymphoid organs. Naive Tconv cells become activated

and then interact and license XCR1+ lymph node (LN) -resident dendritic cells (DCs) through a CD40-dependent process. Preactivated Tconv

cells can recruit more DCs through secretion of CCL5. Licensed DCs attract preactivated CD8+ T cells through the secretion of CCL3/4. Licensed

DCs also express higher levels of co-stimulatory ligands CD70 and CD80/86 and secrete interleukin-12 (IL-12), IL-15 and type I interferon (IFN)

to support effector and memory cytotoxic T lymphocyte (CTL) differentiation. Interaction with licensed DCs results in up-regulation of CD25

and IL-2 production by CD8+ T cells. Tconv cells can also directly support the CTL response by secretion of IL-2 and IL-21. ‘Helped’ CTLs

express high levels of transcription factors – T-bet, Eomes and Id3, effector molecules – granzyme B (GZMB), tumour necrosis factor (TNF) and

IFN-c, chemokine receptors – CXCR4 and CX3CR1, matrix metalloproteases (MMPs) and lower levels of co-inhibitory receptors lymphocyte

activation gene 3 (LAG3), B and T lymphocyte attenuator (BTLA) and programmed cell death protein 1 (PD-1). Treg cells destabilize the interac-

tion of Tconv and CD8+ T cells with DCs by limiting chemokine secretion by DCs and forming aggregates on their surface. Treg cells down-reg-

ulate the expression of CD80/86 by DCs and limit the availability of MHC class II to and CD80/86 through binding via LAG3 and CTLA-4,

respectively. Treg cells can also limit the expression of IL-12 and CD40 by DCs and compete for IL-2 available to CD8+ T cells.
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levels of multiple co-inhibitory receptors including pro-

grammed cell death protein 1 (PD-1), lymphocyte activa-

tion gene 3 (LAG3) and B and T lymphocyte

attenuator.21,33 This resulted in more efficient killing of

tumour cells. In another study, following vaccination and

CD4+ T-cell depletion, the authors also identified a ‘dys-

functional’ state of primed CTLs. Likewise, they observed

decreased expression of cytotoxic effector molecules and

increased expression of multiple co-inhibitory receptors.33

We also demonstrated that up-regulation of CXCR4,

CX3CR1 and matrix metalloproteases on helped CTLs

results in their enhanced migratory and invasive poten-

tial.21 Moreover, provision of CD4+ T-cell help during

priming also resulted in optimal differentiation and main-

tenance of tumour-specific memory CTLs.34,35

To efficiently mediate tumour cell killing, CTLs need to

maintain their effector function. CD8+ T-cell exhaustion

was originally identified during chronic viral infection in

mice and characterized by progressive loss of effector

functions and up-regulation of multiple inhibitory recep-

tors.36 T-cell exhaustion may also be related to defective

memory T-cell formation, and – in the final

stages – physical deletion of T cells. The observed pheno-

type was attributed to chronic antigen stimulation and

subsequently described also in humans with cancer.36

Importantly, the gene signature of ‘helpless’ CTLs resem-

bles previously published signatures of ‘exhausted’ CTLs

from mice suffering from chronic lymphocytic chori-

omeningitis virus infection.33 Moreover, depletion of

CD4+ T cells during chronic viral infection results in

inability to control the virus spread.37 The maintenance

and recruitment of new virus-specific CD8+ T cells during

persistent infection is impaired in the absence of MHC

class II molecules38 and adoptive transfer of virus-specific

CD4+ T cells into chronically infected mice can restore

proliferation and cytokine production by exhausted CD8+

T cells.39 Interleukin-21 produced by CD4+ T cells was

shown to result in extended maintenance of CTL effector

functions during chronic viral infection.40,41 Overall, these

data suggest that exhausted and ‘unhelped’ CTLs repre-

sent two related dysfunctional T-cell phenotypes. Exhaus-

tion is thought to be driven by chronic exposure to

antigen and ‘unhelped’ state by insufficient priming,36 but

provision of CD4+ T-cell help may render CTLs less sus-

ceptible to subsequent exhaustion in the tissue or reinvig-

orate already exhausted T cells.

Overall, CD4+ T-cell help results in enhanced cell-

intrinsic and -extrinsic anti-tumour activity of CTLs by

optimizing their functionality during priming by multiple

complementary mechanisms.

The role of Treg cells at the priming site

The Treg cells represent a distinct subset of CD4+ T cells

characterized by expression of the transcription factor

FOXP3 that is required for their development, maintenance

and immunosuppressive function.5,42 Treg cells have been

broadly characterized as comprising two main populations:

thymic or naturally occurring Treg cells (tTreg) that

develop in the thymus and induced Treg (iTreg) cells that

arise from mature Tconv cells. Both subsets mediate potent

immunosuppressive effects and have been implicated to

play a role in multiple cancer types.43,44

Thymic Treg cells maintain self-tolerance at steady-state

by suppressing the priming capacity of DCs (Fig. 1). Treg

cells continuously scan the surface of DCs and actively

inhibit their maturation and interactions with naive

CD4+ and CD8+ T cells.45–47 Treg cells constitutively

express co-inhibitory receptors, including CTLA-4 and

LAG-3. By means of CTLA-4, Treg cells remove CD80/86

from the surface of DCs and therefore limit their co-sti-

mulatory potential.48 LAG-3 can bind MHC class II on

DCs and thereby suppress their antigen presentation

capacity.49 Treg cells in the mouse were also shown to

down-regulate CD70 from the plasma membrane of DCs

in a CD27-dependent manner resulting in suppression of

Tconv cell responses.50 Other mechanisms involve down-

regulation of CD40 expression and IL-12 production by

DCs, resulting in attenuation of CTL effector differentia-

tion.51–53 Competitive consumption of IL-2 by Treg cells

can reportedly limit the availability of IL-2 to early acti-

vated CD8+ T cells thereby suppressing their activation.54

Treg cells can also modulate chemokine production by

DCs. Treg-mediated down-regulation of CCL3/4 produc-

tion by DCs can inhibit attraction of CCR5+ CD8+ T cells

to CD4+ T-cell–DC interaction sites55 and thereby pre-

sumably interfere with delivery of ‘help’ signals. Treg cell

depletion resulted in overproduction of CCL3/4, which

led to stabilization of interactions between low-avidity

CD8+ T cells and DCs and broadening of the tumour-

specific CTL repertoire.56 Recently, the engagement of

Treg cells has been also shown to constrain the TCR

repertoire of newly primed effector CD4+ T cells.57

Overall, tTreg cells can limit anti-tumour CTL

responses by complementary mechanisms, primarily

affecting the priming capacity of the DCs.

The role of Tconv cells at the effector site

Next to the role of CD4+ T cells during priming, their

engagement was demonstrated to play a beneficial role

also at the effector site (Fig. 2). Most tumours do not

express MHC class II molecules. However, the expression

of HLA-DR molecules by tumour cells has been linked to

a good prognosis of cancer patients,58,59 suggesting bene-

ficial effects of direct recognition of tumour cells by

CD4+ T cells. CD4+ T cells can acquire a cytotoxic phe-

notype and mediate tumour cell killing even when

tumour-specific CD8+ T cells are absent.60,61 The

mechanisms involve induction of apoptosis by cytotoxic
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granules or by stimulation via death ligands including

TNF-related apoptosis-inducing ligand (TRAIL) and first

apoptosis signal receptor ligand (FASL).60 Also, in the

absence of MHC class II molecules on tumour cells, their

presence on the tumour stroma was shown to mediate

CD4+ T-cell activation and subsequent tumour
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Figure 2. The roles of conventional (Tconv) and regulatory (Treg) T cells at the tumour site. Preactivated Tconv cells can directly recognize and

mediate cytotoxicity against MHC class II+ tumour cells. Recognition of antigen by Tconv cells on stromal cells can lead to the secretion of cyto-

kines. Tconv cell-derived interferon-c (IFN-c) induces tumour-cell senescence or supports cytotoxic T lymphocyte (CTL) responses directly or

indirectly by induction of cytokine secretion and attraction of new CTLs to the effector site. Activation of macrophages by Tconv cells can lead

to the secretion of nitric oxide (NO) and subsequent tumour-cell killing. Tconv-derived interleukin-2 (IL-2) can support IFN-c-mediated tumour

cell killing by natural killer (NK) cells. Tumour-derived transforming growth factor-b (TGF-b) can mediate conversion of Tconv to inducible

Treg (iTreg) cells. Treg cells mediate their suppressive activity by inhibiting dendritic cell (DC) maturation and induction of apoptosis of Tconv

cells and CTLs by direct cytotoxicity or cytokine depravation. Treg-cell derived TGF-b, IL-10 and IL-35 inhibit CTL and macrophage responses.

Local vascular endothelial growth factor A (VEGFA) production induces angiogenesis and promotes tumour progression.
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rejection.62–64 Bystander killing of tumour cells through

recognition of stroma required cooperation between CD8+

and CD4+ T cells.65 Upon recognition of antigens at the

tumour site, CD4+ T cells become activated and start pro-

ducing inflammatory cytokines that can support anti-

tumour immune responses by different mechanisms. CD4+

T-cell-derived IFN-c can act directly on tumour cells, caus-

ing senescence,66 or indirectly by enhancing CTL effector

differentiation.67,68 Production of IFN-c can also induce

local chemokine secretion and therefore enhance the

entrance of CTLs to the effector site. IFN-c-mediated

secretion of CXCL9 and CXCL10 was shown to attract

CXCR3-expressing CTLs from the blood into the effector

tissue.69 Conversely, aberrant expression of MHC class II

by melanoma cells led to local production of tumour

necrosis factor-a by CD4+ T cells and resulted in dampen-

ing of the CTL response, suggesting a negative feedback to

limit unwanted CD8+ T-cell cytotoxicity.70 Additionally,

CD4+ T cells can attract and modulate the activity of mul-

tiple innate immune cell types.71,72 For example, upon

recognition of tumour-derived antigens on macrophages

and eosinophils, CD4+ T cells induced their activation and

production of nitric oxide and superoxide leading to

tumour growth inhibition.73 Moreover, IL-2 production

by CD4+ T cells has been shown to enhance IFN-c-
mediated anti-tumour activity of natural killer cells.74

The role of Treg cells at the effector site

At the effector site, CD4+ Tconv cells may convert into

iTreg cells due to the constitutive presence of specific T-cell

or tumour-cell derived cytokines such as transforming

growth factor-b.75,76 Treg cell conversion is part of a nega-

tive feedback on chronic T-cell activation. These data sug-

gest that effects of CD4+ T-cell help mediated at the

tumour site might be limited due to their conversion into

iTreg cells. In addition, tTreg cells may also reside in

tumours. Expression of neuropilin 1 (Nrp1) and transcrip-

tion factor Helios have been suggested to be characteristic

of tTreg cells in mice and humans, respectively.77 Due to

conflicting reports regarding tTreg cell-specific markers,

TCR repertoire analysis has been also used to determine

the origin of intratumoral Treg cells. Several studies

reported small overlap of TCR repertoire between tumour-

infiltrating Tconv and Treg cells, suggesting a modest con-

tribution of iTreg cells to the total Treg cell population.78–

80 Moreover, high frequencies of intratumoral Treg cells

expressing Nrp1, have been linked to poor prognosis of

patients with melanoma and head and neck cancer.81

Presence of Treg cells in tumours has been linked to

both poor and favourable prognosis of cancer patients.82–

85 This is perhaps not surprising, as high numbers of

intratumoral Treg cells can be indicative of an ongoing

anti-tumour T-cell response that may ultimately be sup-

pressed. Recently, in a model of lung cancer, Treg cells

were shown to function within tumour-associated tertiary

lymphoid structures to suppress anti-tumour T-cell

responses.86 Treg cells deploy multiple immunosuppres-

sive mechanisms to keep these ongoing responses in

check (Fig. 2). They can mediate apoptosis of CD8+ by

direct cytotoxicity – tumour-derived factors were shown

to induce grazyme B expression by Treg cells, which led

to CD8 T-cell killing and diminished anti-tumour immu-

nity.87 Moreover, indirect induction of apoptosis by cyto-

kine deprivation by Treg cells has been shown to limit

CD4+ T-cell responses.88 Metabolic disruption has been

proposed as another mechanism of suppression mediated

by Treg cells. Expression of the ectoenzymes CD39 and

CD73 was shown to generate extracellular adenosine,

which suppressed effector T-cell function through activa-

tion of the adenosine receptor 2A.89 Additionally, adeno-

sine has been suggested to play a role in further up-

regulation of Treg cell suppressor functions.90 Inhibitory

cytokines have been the focus of substantial attention as

mediators of Treg cell-mediated suppression at the effec-

tor site. Interleukin-10 and transforming growth factor-b
were shown to inhibit tumour-specific T-cell infiltration

and effector function and to promote an anti-inflamma-

tory phenotype in macrophages.91–93

Intratumoral Treg cells were also shown to play a role in

the loss of effector function by CD8+ T cells. Recently,

Treg-cell-derived IL-35 was shown to promote effector T-

cell exhaustion within the tumour microenvironment.94

Treg cells were also shown to induce down-regulation of

effector molecules and up-regulation of inhibitory recep-

tors on CD8+ T cells. This process was dependent on

reduction of co-stimulatory potential of intratumoral DCs.

Depletion of Treg cells led to rescue and expansion of ‘ex-

hausted’ tumour-specific CTLs.95 In a model of chronic

virus infection, a similar effect was dependent on the provi-

sion of CD4+ T-cell help and co-stimulatory signals to the

exhausted CTLs, highlighting the complementary roles of

Tconv and Treg cells in maintaining functional CTL

responses.96 Treg cells have also been suggested to con-

tribute to tumour progression by inducing angiogenesis.

Hypoxic tumours were shown to attract Treg cells in a

CCL28-dependent manner, which resulted in increased

production of vascular endothelial growth factor A.97

On the other hand, Treg cells were shown to promote

generation of memory CD8+ T cells.98 Expression of

CTLA-4 and production of IL-10 by Treg cells have been

shown to play a role during the contraction and resolu-

tion phase to promote memory CD8+ T-cell formation

through the suppression of pro-inflammatory cytokine

production by DCs.99,100

Implications for cancer immunotherapy

The goal of cancer immunotherapy is to elicit an effective

CTL response. This can be achieved by reactivating pre-
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existing tumour-specific CTLs and/or by priming of naive

tumour-specific CD8+ T cells. In an ideal scenario, cancer

immunotherapy initiates and supports a ‘cancer immu-

nity cycle’ wherein the cancer acts as its own vaccine.101

Cancer cell killing releases tumour antigens that are pre-

sented to naive T cells in secondary lymphoid organs. As

DC-activating ‘danger’ signals are generally lacking in this

scenario, appropriate therapeutic intervention may

enhance priming of new CTLs and in turn increase the

range of antigens that is recognized. The quality of

tumour-specific CTL responses is modulated by both

Tconv and Treg cells, as outlined above. It is therefore

important to know how various cancer immunotherapy

approaches affect both cell subsets. Current strategies

involve therapeutic vaccination, treatment with

immunomodulatory antibodies and adoptive cell transfer.

Early studies in mice showed that vaccination with

small peptides that directly bind to MHC class I mole-

cules induced CD8+ T-cell tolerance, which could be

overcome with agonistic anti-CD40 antibody and resulted

in tumour-specific CTL responses.102 Follow-up studies

demonstrated that vaccination with long peptides encom-

passing both MHC class I and class II epitopes induced

optimal CTL-based anti-tumour immunity.103 Subse-

quently, inclusion of MHC class II epitopes in therapeutic

vaccines has been shown to improve CTL responses and

survival of patients with melanoma or vulvar neopla-

sia.104–106 Vaccination with mutant MHC class II epitopes

was shown to drive the therapeutic response to estab-

lished mouse tumours by inducing CD4+ T-cell

responses. Observed effective anti-tumour CTL activity

was linked in part to the decrease in intratumoral Treg

cells following the vaccination.107 Recent studies in mela-

noma patients demonstrated that vaccination with a syn-

thetic long-peptide or neo-antigen bearing RNA-

transfected DCs resulted in potent CD4+ T-cell responses

and durable tumour control.12,13 Depletion of Treg cells

might further improve the responses to vaccination.

Application of recombinant IL-2–diphtheria toxin conju-

gate, resulting in Treg cell depletion, has been shown to

enhance CTL responses following vaccination with RNA-

transfected DCs.108,109 Modulation of Treg cell activity

can be also achieved by rational vaccine design. Vaccina-

tion with an NY-ESO-1 peptide inducing newly primed

low-avidity Tconv cells did not induce an antigen-specific

Treg cell response and therefore undermined the suppres-

sive activity of Treg cells on high-avidity NY-ESO1-speci-

fic T-cell precursors.110

The most successful and widely applied form of cancer

immunotherapy makes use of blocking antibodies to co-

inhibitory receptors CTLA-4 and/or PD-1. Clinical benefit

observed after the treatment with these antibodies has

been attributed to the effect on anti-tumour CTL

responses. However, the final outcome might be partly

due to indirect effects through opposing the activity of

Treg cells and promoting the activity of Tconv cells as

suggested by expression of CTLA-4 and PD-1 by both cell

subsets.111

Treatment with anti-CTLA-4 monoclonal antibody was

shown to induce priming of a new T-cell response against

the tumour and thereby broadening of the repertoire of

melanoma-reactive CD8+ T cells.112 These data suggest

that CTLA-4 blockade overrules peripheral tolerance, in

line with the fact that in the mouse, both effector and

regulatory T-cell compartments contribute to the anti-

tumour activity of anti-CTLA-4 antibodies.113 CTLA-4

blockade and Treg cell depletion also synergized in sup-

port of an anti-tumour CTL response, which could be

explained by the fact that Treg cells use multiple CTLA-

4-independent immunosuppressive mechanisms.114

Importantly, the inhibitory and depleting properties of

anti-CTLA-4 antibodies have been shown to depend on

their isotypes.115

Blocking PD-1 or its ligand PD-L1 seems to primarily

overrule the suppression exerted on pre-existing tumour-

specific CTLs.116 It enables co-stimulation via CD28 and

likely engages the activity of CD4+ and CD8+ effector T

cells, as was demonstrated in mouse models.117,118 More

recently, the response to PD-1 treatment also proved to

depend on IFN-c-mediated suppression of Treg cell activ-

ity.81 Similarly to CTLA-4 blockade, treatment with anti-

PD-1 antibodies synergized with Treg cell depletion to

mediate tumour regression in mouse melanoma model.119

Combination of CTLA-4 and PD-1 showed synergistic

effects in melanoma patients, suggesting complementary

roles of both receptors.120 Both strategies were shown to

induce proliferation of specific subsets of CD8+ T cells

with ‘exhausted-like’ phenotype. CTLA-4 blockade addi-

tionally induced expansion of a subset of effector CD4+ T

cells, possibly enabling the effects of CD4+ T-cell help at

the tumour site.121

Anti-tumour effects of adoptive cell transfer have been

shown to depend on both Tconv and Treg cell

responses.122 Durable clinical remissions have been

observed in patients with metastatic melanoma treated

with autologous CD4+ T cells against NY-ESO-1.123 Addi-

tionally, vaccination with MHC class II epitopes induced

better tumour control and allowed for the reduction in

the number of adoptively transferred CD8+ T cells needed

to protect against mouse tumour challenge.124

Conclusions

Treg and Tconv cells play important and complementary

roles in CD8+ T-cell function. This is relevant for both

autoimmunity and anti-tumour immunity. The occur-

rence of autoimmunity depends on lack of immunosup-

pression by Treg cells, as well as on ongoing interactions

between Tconv cells and antigen-presenting cells main-

taining CTL effector function.125 Anti-tumour CTL
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responses are often improved upon the depletion of Treg

cells and engagement of Tconv cells. Treg cells mediate

their suppressive activity by directly opposing the benefi-

cial effects provided by CD4+ T-cell help. This is sup-

ported by the fact that depletion of Treg cells can

promote tumour-specific CD4+ T-cell responses and that

CD4+ T cells can counteract Treg cell-mediated suppres-

sion via CD40L–CD40 interaction with DCs.126,127 We

therefore propose that engagement of Treg cells prevents

optimal delivery of CD4+ T-cell help both during priming

and at the effector site.

Moreover, engagement of Treg cells and lack of CD4+

T-cell help have been shown to result in up-regulation of

inhibitory receptors on antigen-specific CTLs.21,94,98

Tumour-specific CD8+ T cells present in the blood of

melanoma patients express PD-1.128 Circulating PD-1+

CD8+ T cells in cancer patients may therefore represent

the ‘helpless’ phenotype, as tumours may not offer the

required innate DC-activating signals and promote Treg

cell responses that prevent optimal delivery of CD4+ T-

cell help signals as discussed above. Treg and Tconv cells

use different signalling pathways downstream from TCR

stimulation and rely on different metabolic pathways for

optimal responses.129,130 Such insights into cell-intrinsic

differences of Tconv and Treg cells may help to specifi-

cally modulate each subset to promote anti-tumour

immunity. Therefore, cancer immunotherapy strategies

that differentially affect each subset may prove to be most

efficient.

Type I IFN has been shown to limit Treg responses

and induce downstream effects of CD4+ T-cell help.8,131

Therefore, promising approaches inducing type I IFN

production include radiotherapy or stimulator of inter-

feron genes (STING) agonists in combination with vacci-

nation or antibodies against PD-(L)1. Another promising

candidate is CD27 agonist antibody. In our mouse model

of therapeutic vaccination, CD27 agonism and PD-1

blockade together recapitulated the effects of CD4+ T-cell

help.35 Anti-tumour efficacy of CD27 agonist antibody

has been shown to depend on effector T-cell stimulation

as well as Treg cell depletion.132 First-in-class anti-CD27

antibody has proven safe in a recent phase 1 clinical

trial.133

Overall, all current cancer immunotherapy strategies

rely in part on immunomodulatory effects mediated by

Tconv and Treg cells. Further mechanistic insight into

these cell subsets will allow for the manipulation of their

activities and subsequently improve the clinical responses

of cancer patients.
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